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The determination of food authenticity is a crucial issue for food quality and safety. Midinfrared
spectroscopy provides rapid chemical profiling of agricultural products and could become an effective
tool for authentication when coupled to chemometrics. This study developed a simple protocol for
classifying commercial juices using attenuated total reflectance infrared spectroscopy. Spectra from
a total of 52 juices together with their extracted sugar-rich and phenol-rich fractions were obtained to
construct multivariate models [hierarchical cluster analysis (HCA) and soft independent modeling of
class analogy (SIMCA)] for pattern recognition analysis and prediction. Spectra of the sugar-rich
fraction, comprised primarily of sugars and simple acids, almost superimposed the whole juice spectra.
Solid-phase extraction enriched phenol compounds and provided signature-like spectral information
that substantially improved the SIMCA modeling power over the whole juice or sugar-rich fraction
models and allowed for the differentiation of juices with different origins. Zero percent misclassification
was achieved by the phenol-rich fraction model. HCA successfully recognized the natural grouping
of juices based on ingredients similarity. The infrared technique assisted by a simple fractionation
and chemometrics provided a promising analytical method for the assurance of juice quality and
authenticity.
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INTRODUCTION

The fruit juice industry is one of the fastest growing sectors
worldwide in the beverage industry. The increasing demands
from free trade, globalization, and changing technology on the
agrifood industry further the drive to determine the authenticity
of foods, one of the most crucial issues in food quality control
and safety (1). The source of raw fruit material is essential to
the steadily high quality of the finished product and to the
compliance with labeling. For example, to be called Concord
grape juice, over 95% of the juice should come from the
Concord grapes and only less than 5% is allowed to come from
other grapes. Similarly, in the wine industry, often times a
certain wine needs to be made from a specific variety of grape
with a specific geographical origin. However, partial replace-
ment of high-cost ingredients with lower grade or cheaper
substitutes like sugar solutions can be very attractive and
lucrative for a fruit supplier. Raw fruit materials with different
varieties and geographical origins could have greatly different
prices; yet, it is hard to differentiate the source. The juice and
wine manufacturers are increasingly concerned with such types
of fraudulence, which not only causes economic loss but also
affects the quality of the finished product and may have major
health implications to consumers. These factors have underlined

the need for rapid, reliable, easy-to-use, and cost-effective
techniques for the industry and regulatory agencies to effectively
check the authenticity of the incoming fruit material and to
monitor the quality of the finished product.

Traditional methods for varietal differentiation, adulteration
detection, or quality monitoring commonly rely on sensory
panels or chromatographic methods to analyze for marker
compounds. Sensory panels are hard to operate and very costly.
Chromatography methods generate large amounts of organic
solvent waste, require time-consuming analysis by trained
technicians, and could be restricted by the dependence on
reference compounds such as sorbitol (2) and certain antho-
cyanins (3,4), which may not be widely present in foods. Yet,
the consideration of only one analytical parameter is not
sufficient, and the use of combined parameters is encouraged.
Physical tests such as pH and°Brix (5), and more sophisticated
methods like stable carbon isotope ratio analysis, have also been
studied (6). Although many methods have been investigated to
examine fruit authenticity, not many are practical for routine
analyses (7).

Currently, there is an evolving trend for the use of profiling
methods combined with chemometrics for the determination of
authenticity. The advantage of the profiling methods would be
the evaluation of the overall components in a sample rather than
looking for a single marker compound. Contemporary Fourier
transform infrared (FT-IR) spectroscopy has gained the capabil-
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ity of rapidly obtaining reproducible biochemical patterns that
would allow for the composition-based statistical classification.
Infrared (IR) spectroscopy is ideal for rapid screening and
characterization of chemical composition variation. Distinct and
reproducible components exist in different commodities of fruits
(8-10); thus, biochemical fingerprints may be produced by FT-
IR to allow for the differentiation of subtle differences. Variation
in the chemical composition attributed to variety, geographical
origin, or alien ingredients might be elucidated through chemo-
metric analysis of spectral-based grouping (11). Advances on
instrument design and auxiliary optics as well as the develop-
ment of powerful supervised chemometric software have made
FT-IR spectroscopy a suitable tool for the assessment of quality
and authenticity in various foods (12, 13). This technique
requires low sample volume and is environmental friendly. It
does not require a large amount of hazardous organic solvents
as liquid chromatography. Minimal or no sample preparation
is required, which greatly speeds up sample analysis. Nearly
real-time measurement was made possible by immediate
software prediction, and once the instrument is purchased, there
is minimal operational cost involved in performing the technique
(12).

Because of the already established use of IR techniques in
some food companies for quality and process control applica-
tions, the industry is familiar with the technology and the
potential exists to extend its application to monitor juice quality
and authenticity. IR spectroscopy is finding increased applica-
tions in the food industry (13), and recently, the list of
investigations for authentication (11,14), classification (15-
17), and product quality control purpose (18) was expanded to
various foods, such as meat, honey (19), tea, apple juice (18),
berry purees (11,14, 15), jams (20), and wines (12), among
others. However, in the beverage industry, IR technology has
not been broadly applied. Insufficient sensitivity was probably
a major hurdle. Kemsley and co-workers (11) stated that
raspberry juices adulterated with 10% apple juice could be
wrongly accepted as pure raspberry, and obviously, an improve-
ment of sensitivity is necessary. Anthocyanins and other phenols
in grapes (3, 10, 21, 22), berries (23, 24), and wines (3) had
been reported to be fingerprint compounds for taxonomic
purposes, but according to our preliminary study, their IR signal
could be masked by other dominant compounds in the intact

juices. In this study, we evaluated the intact fruit juices as well
as their sugar-rich and phenol-rich fractions, in search of unique
spectral information to differentiate juices or to identify potential
adulterants.

Our objective was to develop a simple protocol for the rapid,
high-throughput, reproducible, and sensitive analysis of fruit
juices based on their unique IR spectral information. This
objective was fulfilled by evaluating intact fruit juices as well
as their sugar-rich and phenol-rich fractions, seeking spectral
information that would allow differentiation of juices or
identification of potential adulterants. The ultimate goal of our
research is to provide the food industry and regulatory agencies
with a protocol for the rapid and specific analysis of quality
and authenticity of fruit juices of economic importance.

MATERIALS AND METHODS

Juice Samples.Twelve juices were obtained from two grocery
stores, comprising three cranberry juices, two Concord grape juices,
three blueberry juices, one cranberry juice blend, one blueberry juice
blend, one plum nectar juice blend, and one apple juice (Table 1), to
examine the feasibility of a FT-IR technique for juice differentiation.
Additionally, three of those fruit juice commodities (cranberry,
blueberry, and Concord grape), each manufactured by three companies
and four different batches from each company (a total of 36 samples),
were obtained from four local grocery stores (Table 1) to evaluate
differences caused by origin/manufacturer and processing conditions.
All fruit juices were labeled as “100% pure juice”, except for one grape
blend, which was only 15% juice. We assumed that the manufacturers
had obtained genuine fruit material. For validating the calibration model,
other four juices including two blends (Table 1) were used. The juice
color, pH, and°Brix were recorded (Table 2). Juice color was measured
on a CIEL*C*h color scale by a ColorQuest XE spectrophotometer
(Hunter Associates Laboratory, Inc., Reston, VA), using total transmit-
tance mode, 2 mm path length, 10° observer angel, and D65 light
source. All juices were refrigerated after purchasing and analyzed
promptly to minimize decomposition.

Sample Preparation.Juice samples were acidified with 0.1% HCl
followed by centrifugation at 3000 rpm for 10 min to remove nonsoluble
solids. Each juice was prepared as whole juice fraction, sugar-rich
fraction, and phenol-rich fraction with three replications. The whole
juice fraction was prepared by mixing 1 volume of supernatant juice
with 2 volumes of double-distilled (DD) water containing 0.1% HCl
(Figure 1A). The sugar-rich and phenol-rich fractions were prepared
using a modified solid-phase extraction (SPE) method described by

Table 1. Name Tag and Composition As Indicated in Their Label of All of the Juices Involved in This Study

ingredienta

experiment stage juice name tag first abundant second abundant third abundant fourth abundant manufacturerb

training set apple apple 1
blueberry_M blueberry 1
blueberry_M2 blueberry 2
blueberry_M3 blueberry 3
blueberry_blend apple blueberry 5
cranberry_M1 cranberry 1
cranberry_M2 cranberry 2
cranberry_M3 cranberry 3
cranberry_blend cranberry apple grape 5
Concord grape_M1 Concord grape 1
Concord grape_M2 Concord grape 2
Concord grape_M4 Concord grape 4
Concord grape_M5 Concord grape 5
plum_blend plum nectar apple 6

validation set blueberry_M1 blueberry 1
Concord grape_M5 Concord grape 5
grape_blend (15%) grape HFCSc sugar cranberry 7
grape_blend (100%) white grape cranberry blueberry 7

a All of the juices in the present study, except grape_blend (15%), contain 100% juice without added sweeteners. b The manufacturer names are coded. c HFCS, high
fructose corn syrup.

4444 J. Agric. Food Chem., Vol. 55, No. 11, 2007 He et al.



Giusti and co-workers (25). Briefly, 5 mL of juice was loaded onto a
Sep-Pak Vac (6 cm3, 1 g) C18 cartridge (Waters, Milford, MA) that
had been preconditioned with 10 mL of acidified methanol (0.1% HCl)
and 10 mL of acidified DD water (0.1% HCl) and then washed with 5

mL of acidified DD water. This aqueous eluate was collected and
constituted the sugar-rich fraction containing polar compounds such
as sugars and simple acids (Figure 1B). The column was further cleaned
by passing 5 mL of DD water. Complete recovery of polar compounds

Table 2. Sugar Content, Acidity, and Color Characteristics of 40 Juices Involved in the Batch Variance Evaluation

Training Set

manufacturera

1 2 3

juice batch °Brix pH L*b C* h° °Brix pH L* C* h° °Brix pH L* C* h°

blueberry batch 1 10.0c 3.57 49.1 46.8 15.7 10.1 3.56 67.4 28.3 33.2 9.9 3.31 72.0 27.0 46.5
batch 2 10.0 3.67 43.4 53.7 12.2 10.1 3.84 65.1 30.5 28.5 10.0 3.35 71.7 27.0 45.9
batch 3d 9.8 3.74 36.9 58.7 11.5 10.0 3.71 67.7 27.4 33.2 10.0 3.25 72.2 27.9 50.5
batch 4 10.0 3.68 43.1 52.9 10.6 10.1 3.61 68.1 27.5 34.3 10.0 3.28 73.0 27.0 50.5

1 2 3

cranberry batch 1 7.4 3.07 44.1 69.4 19.7 7.6 2.93 78.1 28.6 26.3 7.4 3.02 56.9 52.7 14.2
batch 2 7.5 2.94 51.3 61.1 16.0 7.7 3.01 79.4 25.4 25.3 7.3 3.02 52.5 53.8 14.6
batch 3 7.4 2.97 43.8 69.7 19.6 7.6 2.79 80.1 25.2 31.1 7.6 2.85 58.7 49.3 13.2
batch 4 7.5 3.09 56.9 51.1 13.3 7.9 2.82 78.8 27.4 27.1 7.6 3.05 81.3 21.1 32.0

1 2 4

Concord grape batch 1 14.2 4.12 65.2 31.5 38.3 16.0 3.36 72.2 29.5 46.9 16.0 3.75 51.3 36.9 21.1
batch 2 15.4 3.86 60.6 37.2 16.2 16.0 3.59 71.2 29.8 44.9 16.0 3.83 39.8 39.3 17.2
batch 3 15.0 4.08 64.8 32.0 34.1 16.0 3.45 71.4 30.2 46.6 16.3 3.74 41.7 38.0 20.8
batch 4 15.2 3.98 63.4 33.6 23.4 16.0 3.40 71.8 29.7 46.3 16.2 3.91 42.6 36.8 27.0

Validation Set

manufacturera

4 5 7

juice batch °Brix pH L* C* h° °Brix pH L* C* h° °Brix pH L* C* h°

Concord grape 16.1 3.76 48.5 37.4 22.7
Concord grape 15.4 3.97 47.2 40.2 19.8
grape_blend (15%)e 14.0 3.18 77.2 32.7 15.2
grape_blend (100%)f 14.6 3.55 85.3 13.2 27.6

a The manufacturer names are coded. b L*, lightness; C*, chroma; h°, hue angle. c All of the values in the table are the means of three measurements. d This juice
appears to be an outlier as determined by PCA. Its °Brix and color characteristics are also deviated from the mean of the other three batches. e Grape_blend (15%) is a
grape blend containing 15% fruit juice as indicated in the label, with grape juice, HFCS, sugar, cranberry juice, and synthetic dyes listed as ingredients. f Grape_blend
(100%) is a grape blend made of 100% fruit juice as indicated in the label containing white grape juice, cranberry juice, blueberry juice, and natural flavors.

Figure 1. Mid-IR spectra of a grape whole juice (A), the sugar-rich fraction (B), the phenol-rich fraction (C), the anthocyanin (solid line) and nonanthocyanin
(dotted line) fractions from the phenol-rich fraction (D), fructose (E), and a single anthocyanin cyanidin-3-glucoside (F). The dotted lines in B and C are
the spectra of residues left on the C18 cartridge after the elution of interested compounds.
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was confirmed by monitoring the IR signal of the succeedingly eluted
water fraction (Figure 1B). The phenol-rich fraction, which contained
primarily anthocyanins, other flavonoids, and cinnamic acids, was
finally eluted from the column with 5 mL of acidified methanol (Figure
1C). Complete recovery was confirmed by monitoring the IR signal
of the succeedingly eluted methanol fraction (Figure 1C). An aliquot
of the phenol-rich fraction was dried under nitrogen flow and
reconstituted by adding 500µL of 30% methanol containing 0.1% HCl.
Standards (all reagent grade) of sucrose, glucose (Acros, NJ), and
fructose (Sigma, St. Louis, MO) were dissolved in DD water (0.10
g/mL with 0.1% HCl) to approximately 10°Brix, which is similar to
the °Brix level of many juices. Phenol standards including cyanidin-
3-glucoside (Polyphenols, Norway) and gallic acid (MP Biomedicals,
Aurora, OH) were dissolved in 0.1% HCl of acidified methanol (70%
v/v) to attain various concentrations ranging from 0.25 to 1 mg/mL.
The phenol-rich fraction was further separated into an anthocyanin
fraction and nonanthocyanin fraction using the modified method from
Giusti and co-workers (25) to evaluate the role of anthocyanins. A
purified chokeberry anthocyanin fraction (with<5% impurity deter-
mined by chromatography peak area under the 254-700 nm max plot)
was dissolved in aqueous methanol (50% v/v) and titrated with HCl or
KOH to pH 2, 4.5, 6.6, and 10 to study the pH effect on IR profile. All
solutions were stored at refrigerated conditions before analysis.

Spectra Acquisition.A Digilab Excalibur 3500 FT-IR spectrometer
(Digilab, Randolph, MA), equipped with a potassium bromide beam
splitter, a deuterated triglycine sulfate detector, and a horizontal
attenuated total reflectance (ATR) accessory (Pike Technologies,
Madison, WI) was used to collect all spectra, operating at 4 cm-1

resolution to improve the signal-to-noise ratio. Ten microliters of whole
juice/sugar-rich sample or 15µL of phenol-rich sample was deposited
onto the amorphous material transmitting infrared radiation (AMTIR)
crystal (Pike Technologies) and allowed to evaporate in a vacuum
chamber for 5 min until a desolvated homogeneous film was obtained.
Spectra were collected over the frequency region from 4000 to 700
cm-1. Interferograms of 128 scans were coadded followed by Beer-
Norton apodization. The absorbance spectrum was ratioed against the
blank AMTIR crystal spectrum (background). Spectra were displayed
in terms of absorbance as calculated from the transmittance spectra
using the Win infrared Pro software (version 3.42, 2003, Digilab, Inc.,
Randolph, MA). To minimize the interference absorbance from moisture
and CO2, the instrument was continuously purged with CO2-free dry
air from a CO2RP140 CO2 removal purifier (Dominick Hunter Ltd.,
Charlotte, NC). Each juice was fractionated three times to account for
sample preparation variation, and each fraction was measured in
triplicate to account for instrument reading variation.

Chemometrics. Multivariate statistical software collected the in-
formation from over hundreds of spectra and further conducted data
reduction analysis to construct statistic models.

Data Preprocessing.The spectra were imported as .spc files into
multivariate statistics program Pirouette 3.11 (Infometrix Inc., Wood-
inville, WA). Second derivative transformation and normalization were
performed on mean-centered data using a five-point polynomial-fit

Savitzky-Golay function. Normalization and second derivatives were
used to mitigate the influence of signal intensity variation.

SuperVised Clustering.The data reduction technique, known as
principal component analysis (PCA), extracted important information
from high-dimensional IR spectra data in the training set by generating
principal components (PCs). A PCA-based pattern recognition method,
soft independent modeling of class analogy (SIMCA), was used to
construct calibration models for predicting the identity of future
unknown samples (26). An important characteristic of SIMCA was the
unlimited number of measurement variables allowed. For spectral data,
often times, the variables far exceeded the number of samples; thus,
the collinearity problem prevented many standard discrimination
techniques from working properly (27). A global PCA using NIPALS
(nonlinear iterative partial least-squares) algorithm was conducted prior
to SIMCA to identify outliers by means of Mahalanobis distance and
sample residual, as well as to optimize the selection of PCs (26). SIMCA
was subsequently performed on mean-centered data of all juice samples,
each fraction separately, and “leave-one-out” cross-validation was used
to determine the dimension of local models (28). Predetermined
(supervised) classes and calculated 95% confidence intervals for all
classes were projected onto a three-dimensional (3D) PCA scores plot
using the first three PCs as axes, so the separation of classes could be

Figure 2. Effect of pH on the IR profile of a purified berry anthocyanin mixture. The absorbance has been normalized to the most intense band for each
spectrum.

Figure 3. Mid-IR spectra (1800 to 750 cm-1) of the sugar-rich fraction
(A) and the phenol-rich fraction (B) of blueberry, Concord grape, and
apple juices. The absorbance has been normalized to the most intense
band for each spectrum.
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easily perceived with respect to the spectral variance captured. Identities
of unknown observations were predicted on the basis of their best fit
to the model.

UnsuperVised Clustering.The agglomerative type hierarchical cluster
analysis (HCA) provided an easy visualization, known as the dendro-
gram, of the relationships among different juices with respect to the
spectra (29). The analysis involved the progressive pairwise comparison
of relative similarity and step-by-step fusing of clusters (30). HCA was
performed on mean-centered data of all juice samples, each fraction
separately, using the centroid linkage method.

RESULTS AND DISCUSSION

Fractionation Procedure and ATR-FTIR Measurement
Optimization. The IR spectra of intact juices were largely
attributed to their sugar composition (Figure 1A,B). A SPE
fractionation procedure involving the use of C18 cartridges
offered good separation of phenols from more hydrophilic
compounds such as sugars and simple acids, making it possible
to obtain reproducible IR spectra of the juice phenols from a
concentrated phenol-rich fraction.

Anthocyanins at pH below 2 exist primarily as the stable
flavylium cation form. However, at higher pH, protonation is
lost and other forms such as the quinoidal base and the carbinol
pseudobase forms predominate. Spectra of anthocyanin standards
at various pH conditions revealed that the IR spectral profile
changed substantially (Figure 2). Deprotonated organic acids
have also been shown to yield different IR spectra as compared
to the protonated molecules (31). To ensure that anthocyanins
are in uniform and stable form and that other phenols are in the
protonated form, 0.1% HCl was present in the phenol extract
to keep the pH below 2. The use of a pH-resistant AMTIR
crystal and a three-reflection ATR accessory, which allows
greater IR absorbance as compared to the single reflection
crystal, enabled the collection of high-quality spectra (32). The
high IR signals combined with the low noise level attained on
the AMTIR crystal were advantageous for the measurement of
low concentration phenol compounds in the juices.

The absorbance of methanol and water was strong in the mid-
IR range; thus, the solvents were removed before the FT-IR
measurements by drying the samples under vacuum. The use
of a water/methanol mixture facilitated the generation of a
homogeneous film on the AMTIR crystal within 5 min. Varying
the percentage of water in a range of 25-100% only slightly
affected the anthocyanin or sugar spectra, ensuring reproduc-
ibility to the models.

Mid-IR Spectra. Mid-IR spectroscopy (4000 to 700 cm-1)
has much to offer the analyst because specific bands may be
assigned to specific chemical entities and provide fairly narrow
bands arising from functional group vibrations with known
assignment in most cases.Figure 1A-C shows the IR spectra
of a Concord grape juice and its sugar and phenol fractions. A
predominant band in the region of 1000-1160 cm-1 was
assigned to the C-O stretching vibration of the sugars in the
sugar-rich fraction (Figure 1B) and whole juice (Figure 1A)
(15,18). In the phenol-rich fraction, a similar band was assigned
to the sugar moiety of glycosides and probably to some extent
to the aromatic C-O stretching (Figure 1C). In all samples,
the region at 2500-3600 cm-1 was dominated by one broad
band, which represented the H-bonded O-H stretching of
carbohydrate, carboxylic acids, and residual water. The doublets
near 2900 cm-1 were caused by the C-H asymmetric and
symmetric stretching of the methyl C-H group (33). In the
whole juice (Figure 1A) and sugar-rich fraction (Figure 1B)
spectra, the band at 1630 cm-1 had slight variation across
replications, and the height was positively associated with the

height of the 2500-3600 cm-1 band, indicating the involvement
of H-O-H bending of crystal/residual water. The H-bonded
OH group of carbohydrates may also contribute to this band. A
band at 1710 cm-1 was assigned to the CdO stretching of
aldehyde/ketone groups in carbohydrates. In the phenol-rich

Figure 4. SIMCA 3D class projections plots based on the 1800 to 750
cm-1 region of the whole juice (A), the sugar-rich fraction (B), and the
phenol-rich fraction (C) spectral data to examine the spectra reproducibility.
Three axes represent the first three PCs in the corresponding group. The
ovals represent the 95% confidence intervals of each cluster. Only one
angle is shown to illustrate the clusters. Abbreviations are described in
Table 1.
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fraction (Figure 1C), the band at 1720 cm-1 was assigned to
the carbonyl CdO stretching of protonated carboxylic acids (34,
35). Because berries usually contain monomeric anthocyanins
that have no carbonyl or ketone groups, the band∼1720 cm-1

usually had limited absorbance. This was illustrated by the
spectrum of cyanidin-3-glucoside, an anthocyanin widely dis-
tributed in berries (Figure 1F). The three bands between 1445
and 1610 cm-1 were attributed to aromatic ring vibrations (33,
36, 37). Multiple bands between 1150 and 1400 cm-1 comprised
intricate absorption of the C-O stretch and C-O-H bending
of phenols, carboxylic acids, and carbohydrates (35).

The IR spectrum of the whole juice was overwhelmed by
the signal from sugars (Figure 1B). The sugar-rich fractions
from all juices except cranberry juices were visually similar to
fructose (Figure 1E) or glucose with respect to their major
bands. As compared to the huge amount of sugars, organic acids
such as tartaric, malic, citric, and quinic acids provided visually
little contribution to the IR absorbance except in cranberry where
the high acid content constituted a major band in the whole
juice and sugar-rich fraction profiles at∼1720 cm-1 (CdO
stretching). The signature-like phenol compounds showed more
pronounced spectral differences among juices (Figure 3B),
paving the foundation for sensitive classification. Anthocyanins,
the most prevalent phenols in berries and grapes, only represent
up to 500 mg/100 g (38), whereas grape juices generally contain
∼15 °Brix sugars (15% sugar), 300-900 mg tartaric acid/100
g, and 150-500 mg malic acid/100 g (39). Thus, extraction
was necessary for successful modeling based on phenols. Further
separation of the phenols into anthocyanin fraction and nonan-
thocyanin fraction revealed that anthocyanins were the major
components contributing to the phenol-rich fraction spectra
(Figure 1C,D).

Supervised Clustering of Juices.Spectra (108) from each
fraction (whole juice, sugar-rich, and phenol-rich) were collected
from 12 juices. At this stage, replication was restricted at the
sample preparation and data acquisition levels to challenge the
capability of the FT-IR method in detecting any difference of
juice components. SIMCA using the optimized 1800 to 750
cm-1 spectral range generated a 3D PCA scores plot (Figure
4) that helped to visualize class separation among samples. The
boundary ellipse around each cluster visualizes the 95%
confidence interval, and each data point in the cluster represents
one juice spectrum. Excellent cluster separation among all juice
samples was achieved in our data set. The fractionation step
enabled resolving the phenolic signal that was initially masked
in the whole juices (Figure 4C). The 3D plots based on whole
juice and sugar-rich fraction samples showed comparable
clustering patterns (Figure 4A,B). Combining their visual

spectral similarity (Figure 1A,B) and similar loadings plots of
PCs (Figure 5), it was apparent that the spectra from the sugar-
rich fraction contained nearly identical discriminating informa-
tion to that of the whole juices spectra. Therefore, in the later
study, we only built calibration models based on the whole juice
and the phenol-rich fraction.

The results showed that our sample preparation and data
acquisition methods generated reproducible spectra for the

Figure 5. Loadings plot of PC1 for the whole juice, sugar-rich fraction, and phenol-rich fraction models.

Figure 6. SIMCA 3D class projections plots based on the 1800 to 700
cm-1 region of the whole juice (A) and the phenol-rich fraction (B) spectral
data to examine the batch to batch variation. Three axes represent the
first three PCs in the corresponding group. The ovals represent the 95%
confidence intervals of each cluster. Only one angle is shown to illustrate
the clusters. Abbreviations are described in Table 1.
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detection of compositional difference among different juices;
however, the variance due to juice compositional deviation had
not been determined. To incorporate batch-to-batch variance and
to increase the robustness of the models, 36 additional juices
(made from three different commodities) were evaluated.
Because the variation due to spectral data acquisition was
determined to be negligible, spectral reading replication was
excluded. A global PCA determined three obvious outlier spectra
beyond the 95% Mahalanobis distance threshold. Those three
spectra were from the same blueberry juice (manufacturer 1,
batch 3) whose°Brix, pH, and color characteristics were
apparently different than the other batches (Table 2). These
differences were attributed to improper handling or abused juice
storage. Therefore, the SIMCA model for each fraction was built
on 105 spectra (Figure 6). Overall, 90% of the total variance
(sum of eigenvalues/total variance) was explained by four PCs
for the whole juice or five PCs for the phenol-rich fraction. To
avoid overfitting, four or five maximum factors were used in
SIMCA for whole juice or phenol-rich fractions, respectively
(40).

Class projections of the spectra collected from the whole juice
(Figure 6A) showed clusters that came very close or overlapped
with others while improved cluster separation was observed for

the phenol fraction (Figure 6B), suggesting that the phenol-
rich fraction incorporated sufficient signature differences among
samples. It was notable that across batches the anthocyanin level
could vary substantially as demonstrated by the variability on
color characteristics (Table 2), but the batch variation was
insignificant in the IR spectral model. On the contrary, the sugar
level was fairly constant across batches; yet, the batch variation
was remarkable in the IR spectral model. We speculate that the
signature information contained in the phenols contributed to
large interclass variance (modeled variance) and levered down
the importance of intraclass variance (residual variance). In the
matrix of class distance (Table 3), which is a measure of
interclass to intraclass distance ratio for the samples, the class
distance was smaller in the whole juice model, showing the
lack of modeling power. As a rule of thumb, a class distance
over three indicates well-separated classes (27). The phenol-
rich fraction model showed larger class distances between almost
any pair of classes, suggesting an enhanced potential to
discriminate subtle differences. The cross-validation process
determined 0% misclassification in both the whole juice and
the phenol-rich fraction models; yet, the latter performed much
better for predicting the external validation data set, as will be
discussed later.

Figure 7. Discriminating power contributed by the independent variables in the whole juice spectra (A) and the phenol-rich fraction spectra (B).

Table 3. Interclass Distances in the Whole Juice SIMCA Model and Phenol-Rich Fraction SIMCA Model Built on the Training Set Spectra

blueberry cranberry Concord grape

class
no. of PCs
retained fraction _M2 _M3 _M1 _M3 _M1 _M2 _M1 _M2 _M4

blueberry_M2 4 whole 0
4 phenol 0

blueberry_M3 4 whole 1.06 0
5 phenol 2.26 0

blueberry_M1 4 whole 0.33 0.97 0
2 phenol 3.17 1.89 0

cranberry_M3 4 whole 5.58 4.15 5.14 0
3 phenol 7.08 5.23 6.10 0

cranberry_M1 3 whole 5.70 4.38 5.23 0.25 0
5 phenol 7.98 5.88 6.52 1.29 0

cranberry_M2 4 whole 6.47 4.87 6.07 0.67 0.66 0
5 phenol 9.57 6.68 8.25 3.79 4.12 0

Concord grape_M1 4 whole 1.10 2.06 1.34 6.27 6.40 7.11 0
5 phenol 6.90 4.90 5.14 6.45 7.55 9.14 0

Concord grape_M2 4 whole 0.91 2.19 1.20 6.61 6.65 7.51 0.83 0
4 phenol 7.30 5.31 6.54 7.36 8.88 9.97 2.39 0

Concord grape_M4 3 whole 1.67 2.80 1.87 7.13 7.27 8.02 0.91 0.87 0
5 phenol 6.14 5.64 5.85 6.87 7.98 10.42 3.52 4.26 0
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The discrimination power revealed that most of the variance
among juice samples was explained in the 1800 to 700 cm-1

range for both the whole juice (Figure 7A) and the phenol-
rich fraction spectra (Figure 7B). This region contained unique
information from the functional groups of organic substances
(33). A primary discriminating factor in the sugar-rich profile
(Figure 7A) came from the CdO stretching band of aldehyde/
ketone groups at around 1705 cm-1 and to a less extent from
the region around 1670 cm-1 associated with quinone or
conjugated ketone, as well as around 962 cm-1 associated with
pyranose ring vibration. The discriminating factors in phenol
profile (Figure 7B) were attributed mostly to the aromatic
structure (1584 and 1450 cm-1) and second to the C-O-H
structure (1317 and 1171 cm-1) of phenolic-OH groups and
sugar moieties. The importance of such regions agreed with the
fact that different anthocyanins have varied numbers of-OH
and methyl groups, and organic acids acylation (p-coumaric acid
as in grape anthocyanins) besides the common aromatic
backbone (Figure 1F).

Unsupervised Clustering. Unlike SIMCA, which is a
supervised pattern recognition approach, HCA is an unsuper-
vised clustering method used to visualize the natural grouping
of the juice spectra (1800 to 700 cm-1), based on the Euclidean
distance calculated from the original variables (41). The largest
Euclidean distance among any two spectra in the multivariate
space is equivalent to a similarity level of 0, whereas a value
of 1 indicates identical spectra (42). Similar spectra would
usually be clustered close together with high similarity level.
The sugar-rich fraction dendrogram (Figure 8A) shows that 36
samples were grouped into three distinct classes: blueberry,
Concord grape, and cranberry. The cranberry cluster possessed
the lowest similarity with other clusters, probably due to the
exceptionally high quinic and other acids content in cranberry,
which turned out to produce a uniquely strong CdO stretching
band at∼1720 cm-1 in the whole juice and sugar-rich fraction
spectra. However, within each type of juice, there was a lack
of sensitivity to differentiate the manufacturer, due to the similar
sugar profile within commodity (43). In the phenol-rich fraction
dendrogram, the similarity values at batch level were generally
above 0.7, the similarity values at the manufacturer level were
generally above 0.4, and the similarity values among different
types of juices were around 0.1 (Figure 8B). With the distinct
similarity levels, juices were grouped into naturally related
clusters and even the manufacturer of juice was distinguished,

again indicating the potential to differentiate varietal or process-
ing condition differences.

The phenol-rich fraction also contained useful information
to associate the juice blends to their ingredients (Table 1). When
juice blends were clustered with the training set data (data not
shown), the cranberry juice blend was grouped close to cranberry

Table 4. Best Prediction and the Next Best Predictions for the Identities of Validation Set Samples in the SIMCA Modelsa

prediction based on different fractionsc

whole juice phenol fraction

next best

juicesb best 1 2 3 4 best

Concord grape_M4 Concord grape_M2 Concord grape_M1 blueberry_M2 Concord grape_M4 blueberry_M1 Concord grape_M4
Concord grape_M2 Concord grape_M1 blueberry_M2 Concord grape_M4 blueberry_M1 Concord grape_M4
Concord grape_M2 Concord grape_M1 blueberry_M2 Concord grape_M4 blueberry_M1 Concord grape_M4

Concord grape_M5 Concord grape_M1 Concord grape_M4 Concord grape_M2 blueberry_M2 N/Ad Concord grape_M1
Concord grape_M1 Concord grape_M4 Concord grape_M2 blueberry_M2 blueberry_M1 Concord grape_M1
Concord grape_M1 Concord grape_M4 Concord grape_M2 blueberry_M2 N/A Concord grape_M1

grape_blend (15%) blueberry_M1 N/A N/A N/A N/A N/A
N/A N/A N/A N/A N/A N/A
blueberry_M1 N/A N/A N/A N/A N/A

grape_blend (100%) Concord grape_M2 Concord grape_M4 Concord grape_M1 blueberry_M2 N/A N/A
Concord grape_M2 Concord grape_M1 Concord grape_M4 N/A N/A N/A
Concord grape_M2 Concord grape_M1 blueberry_M2 Concord grape_M4 N/A N/A

a The “next best” prediction usually occurs when the boundaries of clusters approximate each other or even overlap. b Refer to the compositional details in Table 1.
c Each juice in the validation set was predicted with three replicated spectra. d N/A means no matching to established category.

Figure 8. HCA dendrograms based on the 1800 to 700 cm-1 region of
the whole juice fraction (A) and phenol-rich fraction (B). Each horizontal
stick represents a spectrum. Each vertical stick indicates the similarity
level as projected onto the X-axis. Misclassification at the manufacturer
level frequently occurred in the whole juice fraction model; thus, clusters
could only be labeled for each type of fruit juice.
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juices, the Grape_blend (100%) containing mainly grape juice
was clustered close to Concord grape juices, and the blueberry
juice blend was positioned between the apple and the pure
blueberry juices, which were the first and second abundant
ingredients in this juice blend, respectively. These observations
pointed out the potential of using multivariate regression models
to predict the concentration of juice ingredients.

Prediction of Unknown Samples.Four juices were used as
an external validation set (Table 2) to evaluate the prediction
performance of the SIMCA models built on the training set (28).
An unknown data was only assigned to the established class
for which it had a high probability (27). Any new point falling
outside of the 95% confidence interval boundary of an estab-
lished class would have a standard deviation exceeding the upper
limit for the residual standard deviation (RSD), which was
calculated by multiplying the mean RSD with the square root
of a critical F value, and would be rejected to the identity of
that class (44). With respect to prediction, an important
advantage of SIMCA over hard modeling is the ability not only
to determine whether a sample does belong to any of the
predefined categories but also to determine if it does not belong
to any class. Class prediction in SIMCA could fall into three
possible outcomes: (i) the sample was properly classified into
one of the predefined categories, (ii) the sample did not fit any
of the categories, and (iii) the sample properly fit into more
than one category (26). On the basis of the phenol-rich fraction
model (Table 4), 100% correct classification was achieved at
the commodity level and neither of the juice blends was assigned
as any of the pure juices in the model, supporting the excellent
prediction power of the phenol-rich fraction model. It should
be noted that no blends were used in developing the calibration
model. On the basis of the whole juice model, 100% correct
classification was achieved for pure juices at the commodity
level. However, five out of the six juice blends were incorrectly
assigned the identities of pure juices. It is evident that the
phenol-rich fraction model effectively improved the prediction
power for unknown samples. We expect that the improvement
of modeling power would enhance the detection limit for
adulteration or quality deviation.

Because phenols are almost universally present in any plant
material and are easily extractable, authentication of fruit
material using the phenol-rich fraction is expected to be valuable
for various applications. The sample preparation procedure could
be simplified to shorten the fractionation procedure by directly
analyzing the SPE eluate without losing useful information or
reproducibility, giving even higher efficiency to the method.
Caution must be taken for possible adulteration by phenol-free
material, such as sugar solution. Therefore, we recommend that
both the whole juice and the phenol-rich fraction be analyzed
and their data combined for more robust modeling and improved
screening for juice authentication. Ideally, potential adulterants
should be included in constructing the model for increased
prediction power. Our constructed statistical models demon-
strated the potential to provide the juice/wine industry with a
rapid and reliable tool for checking the authenticity of incoming
materials and monitoring the finished product quality. Once a
broad range of genuine samples are collected, especially to
involve the juice of interest and the potential adulterants, the
model could become robust and able to identify deviated
samples.

ABBREVIATIONS USED

IR, infrared; FT-IR, Fourier transform infrared; NIPALS,
nonlinear iterative partial least-squares; ATR, attenuated total

reflectance; AMTIR, amorphous material transmitting infrared
radiation; SPE, solid-phase extraction; DD, double distilled;
HCA, hierarchical cluster analysis; PC, principal components;
PCA, principal component analysis; SIMCA, soft independent
modeling of class analogy; RSD, residual standard deviation.
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